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Abstract— Wall conduction effects on steady-state turbulent flow heat-transfer experiments are examined,
and an analysis of heat transfer with axial conduction in the wall bounding a fluid with turbulent
flow is developed to determine the effects of conduction in the wall on heat transfer with turbulent flow

between parallel plates.

From the results of numerical calculation for Reynolds numbers in the range 10* < Re < 10° and
for Prandtl numbers in the range 0.01 < Pr < 10, it was confirmed that the ratio of thermal conductivity
of wall to that of fluid and the thickness of wall could have significant effects on heat transfer and
temperature field in the fluid adjacent to the wall. Experiments on the flat plate were conducted and

the experimental results are in good agreement with the analytical results.

NOMENCLATURE
a;, (+Drisy;
b, plate thickness [m];
b *9 b/ Yo,

Cn, coefficient in equation (6);

Gz, Graetz number = 4y, RePr/L;
Hy, CaRL(0);

K,  kiks;

k, thermal conductivity [W/m-K];
L, length of heat-transfer section of plate [m];

Nu, local Nusselt number;

Nup, local Nusselt number based on constant heat
flux at solid—fluid interface;

Nur, local Nusselt number based on constant
temperature at solid-fluid interface;

Nu,,, fully developed Nusselt number;

Pn.,  164%/Gz;

Pr,  Prandt] number;

Q, dimensionless temperature gradient;
4, heat flux [W/m?*];

R, R,,, eigenfunction;

Reynolds number;

L, temperature [K];

u, velocity of fluid [m/s];

u*,  ul\/(T./p);

wt, w/V=ut/V*;

V,  mean velacity of fluid [m/s];

Vi @uip);

X, coordinate parallel to flat plate {m];
x*,  x/L;

¥y coordinate normal to flat plate [m];
PN (W7 R

v yve=yT/ys;

Yo,  half width of duct [m].

Greek symbols
a, thermal diffusivity [m?/s];
B, coefficient defined in equation (22);
¥s 1+ Pr(es/v);
4, coefficient defined in equation {23);
S5 eddy diffusivity for heat [m?/s];
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6.  eddy diffusivity for momentum [m2/];

8, dimensionless temperature defined by
equation (5);

0, dimensionless temperature defined by
equation (13);

v, kinematic viscosity of fluid [m?/s];

A, A, eigenvalue;

£, dummy variable;

P, density of fluid [kg/m®];
T, coefficient in equation (15);
t.,  shear stress at interface [N/m*].

Subscripts
e, entrance;
1, fluid;
0, solid-fluid interface;
s, solid;
w, lower surface of plate.

INTRODUCTION

IN MOST previous analyses on the heat transfer with
forced convective flow, it is common practice to pre-
scribe the temperature, the heat flux, or a combination
of the two at the solid—fluid interface. In most real
cases, however, these boundary conditions cannot be
known a priori, but depend on the coupled mechanism
of heat transfer in the fluid and conduction in the
solid.

It is then necessary to solve the energy equations
for the fluid and the solid body simultaneously under
the conditions of continuity in the heat flux and tem-
perature at the interface. For example, in the design
and analysis of a heat exchanger, axial conduction of
heat in the wall bounding a fluid is usually ignored,
but it can have significant effects on the heat transfer
and temperature field in the fluid adjacent to the wall.
This is especially true in the thermal entrance region.

Recently, Perelman [1] called this type of problem
a “conjugated” boundary value problem, and presented
the model of slip flow around a body with distributed
heat sources, but no numerical results were given.
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Sell and Hudson [2] treated the problem of heat
transfer to a slug flow past a flat plate and Davis ef al.
[3] studied the effect of conduction in the wall on the
heat transfer to Poiseulle-Couette flow between
parallel plates. Olsson [4] considered the problem of
heat transfer to a finite wedge-shaped fin in laminar
flow. Luikov et al. [5, 6] carried out a series of analyses
on these problems in laminar flow. The previous pub-
lished papers deal with the problem of heat transfer
only in laminar flow, and we have few analytical
treatments for turbulent flow.

From a practical point of view, however, it is often
desirable to use short passages with turbulent flow in a
heat exchanger in order to take advantage of the high
heat-transfer coefficients in the entrance region.

The purpose of the present study is to analyse a
conjugated heat-transfer problem with turbulent flow
between parallel plates. The problem deals with heat
transfer between a flat plate of finite thickness and
the fluid in contact with it. The boundary conditions
of the lower surface of the plate that contacts a heat
source are taken to be the uniform heat flux or the
constant temperature. The main objective is to deter-
mine how the interfacial temperature and the local
Nusselt number variations (that are influenced by axial
conduction in the wall) can be predicted from solutions
for the simultaneous energy equations for both fluid
phase and solid wall, and to interpret the results of
our experimental works.

1. MATHEMATICAL ANALYSIS

1.1. Derivation of fundamental equations
Consider turbulent flow between parallel plates,
shown schematically in Fig. 1. In the present work,
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F1G. 1. Schematic model of heat transfer section of duct.

axial conduction in the fluid and viscous heat dissi-
pation can be ignored and the physical properties of
the fluid are assumed to be constant. The temperature
field in the fluid is described by

oty @ Otf]
Nt A, - 1
U 3y l:(“'i'ﬁh) 2y @)

Boundary conditions
x< 0ty =ty
x>0:y=0, tr = trolX)

:y=2yq, Otg/dy=0. (2)

The temperature field in the wall bounding the fluid

is given by

o,
ox?

. o,
dy?

=0 3)

Boundary conditions
x=0,L:0t0x =0

y= 0 = tsu(x)
y = —b :0t,/0y = —q,/k (for the constant heat flux
at the lower surface of the plate)
or ity = t,, (for the constant temperature at the

lower surface of the plate). 4)

1.2. Analysis of energy equation for the fluid

The temperature can be written in terms of the solu-
tion for a constant interfacial temperature by applying
the extended Duhamel’s theorem.

First, we solve the problem with a constant tem-
perature condition (uniform temperature on one wall,
the other wall insulated). The dimensionless variables
are defined as

u*:zzz—’ x* = x’
v VT L
N (5)
x_Y_) _ Lp—ly
=—=—0, ="
Yo Yo Lro—tge

We obtain by the method of separation of variables

z 16
8;= Y CwRnu(y*)exp <—5; )f,x*) ©)

m=0

where A,, R, are the eigenvalues and eigenfunctions
of the Sturm-Liouville problem

d dR
a; (}’ H;;)'f‘ /12u*R =0 (7)
where

&n
y=1+Pr—
v

Boundary conditions

y*=0:R=0
y* = 2:dR/dy* = 0. (8)
The coefficients C,, are given by
2
j u*Rn(y*)dy*
Co = T ©)
J u*RA(y*)dy*
0

The mixed-mean temperature and the local Nusselt
number are given by

£ CnRLO
Om=1% Y < 72 ¢ )exp(-16zlﬁ,x*/Gz) (10)
m=0 m
8 Z Cn R;,(0)exp(— 1642 x*/Gz)
Ny =—222 (11)

m;O S"%"l«)‘) exp(— 1642 x*/Gz)

Hatton et al. [ 7] have tabulated the eigenvalues and
the constants for this problem for the various values
of Prandtl number and Reynolds number. However,
there are ambiguous statements in the eddy diffusivity
distribution and the fluid velocity distribution. They
assumed that the ratio of the eddy diffusivities for
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momentum and heat was unity. To obtain the more
accurate solution, we used the eddy diffusivity and the
fluid velocity distribution presented by Mizushina et al.
[8,9] from a reconsideration of the available experi-
mental works (cf. Appendix 1). We used the turbulent
Prandt! number as follows. (0 € y* < 1)

Pr =001
=0.1:
o fon = [14+90Pr (e, M) 1[35 + (e,/v)]
¥ [0.025Prie,/v) + 90Pr* (s, /M4 1145 + (£,/9)]
{Notter et al) [10]
Pr=0.7:¢,/e, = 0.86 (Larson et al) [11]

Pr =10 &,/e, = 1/(0.1265y* + 1.064)
(Gowen et al) [12]. (12)
New dimensionless variables are defined by
© = 1/t (for the constant heat flux at the lower
surface of the plate)
© = {t—t,)/tre—ts) (for the constant temperature at
the lower surface of the plate).
(13)

The solution for the problem with a variable interfacial
temperature can be written by applying Duhamel’s
theorem to equations (6) and (13) to give

a [ =
@f = ‘5‘);; J {efo(é) - [Gfo(é) - 1:} mgﬂ Cm R"‘(y*)

1]

X CXP[—Pm(X*—i)]}di (14)
where, it is assumed that the interfacial temperature
is given by

Op(8) = 1+1o+11 8+ 8+ + 1,8 4. (15)

The dimensionless temperature gradient at the inter-
face is given by

a0,
o--(3)
77 T\GF fyemo

w© o H
=10 3, Hpe " ay Y —I;ﬁ(l*e“""”“)-{—...

m=0 m=0 £m
o«

H,[ .. i . (i-1 [
ta;p Y o px o xxED D
X P,,.[ P, [’C P,

1 = Emx
~7);.(1.»@ e ’)ﬂ]+ (16)

(for the constant heat flux
at the lower surface of the
plate}

where

Qr=dryolksrtre

{for the constant
temperature at the lower
surface of the plate)

Py =1637/Gz, Hp = CoRW(0), a; = (i+ D4

Qr = gryolksltse—1ts)

1.3. Analysis of energy equation for the solid
Equations (3) and (4) (the equation of heat conduc-

tion in the wall) are transformed into dimensionless

form as those for the fluid. The solutions are given by
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equations (17) and (18} for the constant heat flux, and
by equations (19) and (20) for the constant temperature
at the lower surface.

1

O, = —wa*+J O(x*)dx*

Q
2 cosh[nnye(y* +b*)/L]

+2%

= cosh[nmyeb*/L]

cos nmx*

1
X J O (x*)cosnrx*dx* (17)
0
de,
&=- (dy*>y'—0 =0
-2y (EE)tanh (_XQ b*)cos nmx*
n=1 L
1
xj‘ O (x*ycosnax* dx* (18)
0
where
Os = gsyo/kstres Qw = quyotkstye
y* 1
®,= (—;+1)f ©(x*)dx*
0
Z. sinh[nmyo(y* +b*)/L] cos
o<1 sinh[nmyob*/L] ST
1
X j Oy (x*jcos nex*dx* (19}
1]
0= - de, _ 1@ "t
s dp* o b* so(x*)dx
2 (nm
-2 ..;1 ( g")coth (m;jm b*)cos nmx*
1
X j Oy,(x*) cos nax*dx* (20
0
where

QS = qsyO/ks(tfe—tw), @)so(X*) =14 Z rix*".
i=0

1.4, Heat exchange between the fluid and the solid wall
The following relations are applicable at the interface

®fo = ®so, Qf = KQs (21)

where K = k/k;.

In order to determine the coefficients 1o, 74, 72,... O
obtain the interfacial temperature distribution, the
orthogonality of cosine function is applied to equation
(21) (Sakakibara et al) [13,14]. A system of linear
simultaneous equations which can be solved to evaluate
the coefficients is obtained by

1 w @ o
J\ Z [L;—T‘ {GQC_P"’:"" z aix*i+ Z iaiF,-ﬂ x*)}
i=0 i=1

0 m=0 m

——H,,,toe“""""]dx* =KB (22)
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I o« Hm L . ©
j Z Ij‘—— {aoe_me‘*‘ Z a,»x*‘+ Z ia,-F;-l(x*)}
0 Pm i=0 i=1

m=0

—H,, 1 e"’""*}cos nnx* dx*

¢] i=0

Knny ! d .
= _n_;TLoa J <1+ ) r,-x*’)cos nmx*dx*  (23)
where
F(}(x*) = {1—6_1"’9:‘}/1),,,
Fi(x*) = {x* —iF;_1(x*)}/Pp.

For the constant heat flux at the lower surface of the

flat plate
*
p=-0n aztmh@@gi)

and for the constant temperature at the lower surface
of the flat plate

i 1 1 @ .
B = »f j (H— y rg*‘)dx*dx*
b* 0 JO i=0

1 h%
5 = coth (’"‘} ob )T‘
L

the mixed mean temperature and the local Nusselt
number are given

8 [
Opp=14+— dx* 24
5 +G2L Qrdx (29
49,
Ny = o Tl {25)
{G)fo”‘@fm}
The local Nusselt number is expressed by
Gz Gz Gz 3Gz
Nu:7[(11‘?+t2--2—x*+13~—8~x*2+...)
m=0 Pm
21
—P—;(l——e"”m’“)

m

6‘{3 1 1 Pk
‘ﬁ@“zﬁa‘“)‘}]

X Hm{;ie-*’mx*+~;-;-a—-e‘*’»~*‘>
m=0 n m

2 1 1
+—Z£(x*———+*e""”“')

613 [x*2 x* 1 1
—3‘< +”P—'§"“‘I';£e_p”“‘)+..‘}. (26)

2. ANALYTICAL SOLUTIONS AND CONSIDERATIONS

2.1. Solution of eigenvalue problem

The values of 4, and C,R}(0) for three Reynolds
numbers and four Prandt] numbers are given to twenty
terms in Table 1. In Fig. 2, our solution for unsym-
metrical heat transfer is compared with Hatton et al.’s
solution [7] to the analogous energy equation for tur-

2 P,

1The notation of é in Kagaku Kogaku [13] should be
read & = cothnzb. It is corrected in Heat Transfer, Japan.
Res. [13].
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F1G. 2. Comparison of present numerical values with those
of Hatton et al. (uniform temperature on one side, the other
side insulated).
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bulent flow between parallel plates. For Pr= 0.1, our
solutions are in fairly good agreement with Hatton
et al’s solutions. On the other hand, our solutions
show lower Nusselt numbers than that obtained by
Hatton et al’s solutions for Pr=10. This may be
attributed to the difference of the values of the eddy
diffusivity, the fluid velocity distribution and the tur-
bulent Prandtl number used in solving the energy
equation. Hatton et al’s solution is also limited to
values of x/4y, greater than 1. However, our solution
described here is effective to values of x/4y, greater
than 0.1.

2.2. Solution of the conjugated problem

Inthe previous papers, the effects of axial conduction
in the wall on the interfacial temperature were esti-
mated by Sell er al. [2] and Davis et al. [3] for the
constant heat flux at the lower plate surface. However,
the general conclusion was not found for the local
Nusselt number distribution. In this work, we made
the numerical analysis for the effect of wall conduction
on the local Nusselt number and the interfacial tem-
perature distribution. The effect of wall conduction on
the heat transfer was also discussed for a flat plate
with the constant heat flux and the constant tempera-
ture at the lower plate surface contacting the heat
source.

In the calculation, the orthogonality of cosine func-
tion is applied to equation {21). The linear simul-
taneous equations, equations (22} and (23), have a
unique solution and were solved by Gauss-Jordan
method. Equation (15) was found to be a rapidly con-
vergent series, so the results presented here were cal-
culated by third order polynomials. The eigenvalues
and constants in equations (22) and (23) were estimated
by the first twenty terms.

The equations describing the turbulent conjugated
heat transfer are solved numerically for 10* < Re < 10,
0.01 < Pr<10, yo/L =002, 0001 €b/L <005 and
1 < K < 50000. Figures 3-6 show the representative
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Re = 10000
Pr =001 Pr=0.1 Pr=07 Pr=10
m A Cn Rin(0) i Cm R(0) Am Cn R (0) Ao Cn R(0)
0 0.7907424 1.062687 1.068251  2.023355 1.800767  6.214894 3.200927 20.42286
1 2.387000 0.9141356 3274810  1.495191 6222992 2.343795 19.76450 1.577115
2 3980757 0.8649360 55090067  1.182879 11.00993 1.213341 36.94320 0.7824505
3 5.576050 0.8223678 7766698 09583012  15.83777 0.8386898 5326427 0.7370211
4 7.173212 0.7807557  10.02954 08155993  20.50739 0.7250058 66.34003 0.8934897
5 8.772061 0.7404411  12.28273 0.7333593 2491433 0.7319784 71.20027 1.670051
6 10.37223 0.7031015  14.52004 0.6948843  29.12993 0.8561895 88.83077 2.942503
7 1197332 0.6691142  16.74341 0.6837522  33.32843 1.058112 101.3196 2.601044
8 13.57503 0.6388302  18.95881 0.6879798  37.57233 1.241457 114.9463 1.847579
9 15.17713 0.6118909  21.17203 0.6957883  41.86729 1.273128 128.4029 1.623957
10 16.77947 0.5877954  23.38667 0.6985316  46.22904 1.173910 141.1888 1.835968
11 18.38203 0.5662184  25.60425 0.6944153  50.64224 1.050001 153.8608 2.2103711
12 19.98471 0.5468987  27.82464 0.6834765  55.07477 0.9498438 166.7016 2.325579
i3 21.58744 0.5205461  30.04692 0.6702539  59.50155 0.8877637 179.9056 2.054597
14 23.19011 0.5140634 3227043 0.6543382  63.91024 0.8581674 1933113 1.800787
15 2479267 0.5002540  34.49548 0.6370509  68.29502 0.8559606  206.6267 1.698895
16 26.39505 04879510 36.72321 0.6157694  72.65587 08827127  219.7017 1.767534
17 2799724 0.4769195  38.95478 0.5909196  77.00084 09225720 2326632 1.928840
18 29.59928 04668772 41.19025 0.5649742  81.34468 09539520  245.6602 1.950960
19 31.20112 0.4576459  43.42787 0.5408628  85.70704 0.9427588 2588776 1.848189
Re = 50000
0 0.8184341 1.127200 1635171 4.801148 3.320573  21.21170 6.408935 81.69296
1 2.466011 0.9868990 5.056098  3.307465 11.65080 7426775 38.77928 6.063249
2 4.110855 09463364 8.554299  2.432236 20.73845 3616122 72.88529 2.336639
3 5.756289 09147396 1209812 1.890018 2995922 2.361603 107.0561 1.530405
4 7.402283 0.8871595 1563778 1.552916 39.02563 1.888524 139.8280 1.311778
5 9.048500 0.8637160  19.14322 1.452925 47.83287 1.720458 171.3628 1.328721
6 10.69463 0.8455436  22.61096 1.403317 56.42005 1640403 2016754 1.339187
7 12.34051 0.8319845  26.05602 1.358832 64.92529 1.591137  231.6762 1.475725
8 13.98614 0.8219738  29.49789 1.384163 7448263 1471176 261.4938 1.476164
9 15.63165 0.8139109 3295155 1.344156 82.13569 1.379199  290.7883 1.746614
10 17.27717 0.8057989  36.42348 1.265567 90.82749 1.270186  318.4558 1.919018
11 18.92296 0.7968315  39.90958 1.190464 99.45799 1.266908 3443066 2.656835
12 20.56907 0.7864942  43.39833 1.120982 107.9627 1.266408 371.3062 3.662810
13 22.21551 0.7753367  46.87870 1.087722 116.3581 1.365504  398.4251 4.771676
14 23.86217 0.7639133  50.34671 1.066148 1247126 1.426507 4259647 5.364144
15 25.50891 0.7533244  53.80613 1.066216 133.0815 1.523635  453.9592 5.187028
16 27.15558 07437021  57.26454 1.053514 141.4751 1.560169  482.3039 4937506
17 28.80213 0.7354858  60.72865 1.038746 149.8723 1.642241 511.0129 4296126
18 30.44857 0.7278780  64.20089 1.004302 158.2538 1.730880  540.0888 3507357
19 32.09501 0.7207162  67.67827 0.9771636  166.6222 1.890389 5694771 3.334017
Re = 100000
0 0.8527500 1.224706 2057088  7.669958 4.378259  36.89763 8.669194  149.0541
1 2.569709 1.071055 6.416271  4.949062 15.56713 12.23460 52.45694 10.96869
2 4.284535 1.018010 10.91605 3.423840 27.82778 5.824700 98.66410 4.135897
3 6.000345 09737277 1548217 2.577208 40.24260 3.801105 144.9288 2.623060
4 7.716726 09363319  20.02775 2.158581 5241224 3.060748 189.2804 2.144607
5 9.432970 0.9074128  24.50747 1.988794 64.19979 2806684  232.0528 2031511
6 11.14861 0.8885302  28.92332 1.953850 75.68026 2668047 2734533 1.861865
7 12.86355 0.8780737  33.30667 1.978013 87.07153 2.548486  314.9421 1.836754
8 14.57798 08735705  37.69144 1.966780 98.57651 2289103 356.9607 1.589301
9 16.29221 0.8716454  42.10002 1.903169 110.2565 2086113 399.6086 1.689550
10 18.00650 0.8686807  46.53793 1.779837 122.0276 1861885 4419238 1.567629
11 19.72118 0.8630604  50.99263 1.675925 133.7528 1.813739  483.3555 1.943482
12 21.43633 08541790 55.44331 1.590364 145.3451 1.737024  523.4539 1.930795
13 23.15190 0.8435228  59.87590 1.566095 156.8185 1.794289  362.6655 2.479385
14 24.86765 0.8325389  64.29075 1.551598 168.2594 1.732525  601.2783 2.513732
15 26.58334 0.8234567  68.69899 1.557649 179.7472 1.750248  639.4575 3.152696
16 28.29877 08165827  73.11397 1.524803 191.2937 1.646895  677.1364 3.506139
17 30.01390 08123880  77.54388 1.483944 202.8414 1.675537  714.8141 4.576444
18 31.72881 0.8093270  81.98724 1414376 2143179 1.631505  752.8343 5.667472
19 33.44369 0.8065385  86.43420 1.371684 225.6981 1752710 791.1887 6.676805
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Fi1G. 3. Effect of ratios of conductivity of plate to that of

fluid on interfacial temperature profiles and local Nusselt

numbers (constant heat flux at lower surface of plate,
Pr = 0.7, Re = 10000, Nu,, = 25.9421, yo/L = 0.02).

examples evaluated for Re = 10000, Pr = 0.7, yo/L =
0.02, 0.001 < b/L < 0.05 and 1 € K < 50000. Figure 3
shows the effect on the Nu/Nu,, and the interfacial tem-
perature distribution for various conductivity ratios, K,
for the constant heat flux at the lower plate surface and
for b/L = 0.01. The effect of axial conduction in the
plate on the heat transfer increases with increase of
conductivity ratio K. With an increase of K, the

I- T T T T 4

b/L=001

EQSLW

B AL T 1 T 7 Ll
-—— const. heat flux at interface
————— const. temperature at interface

NU/NU-(' )

F1G. 4. Effect of ratios of conductivity of plate to that of fluid

on interfacial temperature profiles and local Nusselt num-

bers (constant temperature at lower surface of plate, Pr = 0.7,
Re = 10000, Nu,, = 25.9421, yo/L = 0.02).
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Nu/Nu,, and the interfacial temperature distribution
approach asymptotically to the result for the constant
temperature at the interface. At K = 50000, the
Nu/Nu,, distribution almost agrees with the result for
the constant interfacial temperature and the interfacial
temperature distribution is almost uniform. On the
other hand, for small K, the effect of axial conduction
in the plate becomes insignificant and may be neglected.
For K < 1, it is obvious that the Nu/Nu,, distribution
agrees with the result for the constant heat flux at the
interface. The effect on the interfacial temperature
distribution for various conductivity ratios has a ten-
dency to agree with that of Sell et al. [2].

Figure 4 shows results for the constant temperature
at the lower plate surface and for b/L = 0.01. It is
indicated that as K increases, the interfacial tempera-
ture profile approaches the limiting profile predicted
for the constant interfacial temperature. For K > 100,
the Nu/Nu,, distribution almost agrees with the result
for the constant interfacial temperature. When K
decreases to a small value, the temperature difference
{tso—tm) between the interfacial temperature and the
mixed mean temperature is very small but the order
of the temperature difference varies considerably with
x*. However, the temperature difference (t,—7y,)
between the lower plate surface and the interfacial
temperature becomes almost uniform. Consequently,
the heat flux at the interface becomes uniform. For
K <1, it seems that the Nu/Nu, distribution, con-
trary to the above tendencies for large K, approxi-
mately agrees with the results for the constant heat flux
at the interface.

Now, the effect of the flat plate thickness on the heat
transfer is discussed. Figure 5 shows the results for
the constant heat flux at the lower plate surface for
K =10000. It seems to be a quite reasonable con-
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FiG. 5. Effect of plate thickness on interfacial temperature
profiles and local Nusselt numbers (constant heat flux at

lower surface of plate, Pr = 0.7, Re = 10000, Nu,, = 25.9421,
yo/L = 0.02),
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clusion that for small b/L, the Nu/Nu,, distribution is
in good agreement with the result for the constant heat
flux at the interface. On the other hand, the effect of
axial conduction in the plate increases for large b/L
and the interfacial temperature distribution becomes
almost uniform. The effect of b/L on the heat transfer
varying with K tends to increase with increase of K.
The effect of piate thickness on the interfacial tem-
perature has a tendency to agree with that of Sell
et al. [2] and Davis et al. [3]. Figure 6 shows the
results for the constant temperature at the lower plate
surface for K = 1. When b/L is very small, it can be
treated as ©,, = 0, that is, ¢, = t,(const.). And, the
solution approaches asymptotically to that of heat
transfer to turbulent flow neglecting wall conduction.
The effect of b/L on the heat transfer varying with K,
contrary to the above tendencies for the constant heat
flux at the lower plate surface, tends to increase with
decrease of K.

The effects of axial conduction on the heat transfer
obtained for various values of Reynolds numbers and
Prandtl numbers have the similar tendencies as are
illustrated in Figs. 3—6. The difference between the local
Nusselt numbers calculated with and without the effect
of wall conduction is markedly affected by Reynolds
numbers and Prandt] numbers, Tables 2 and 3 are the
results which show the degree of difference obtained
for 10* < Re < 10° and 0.01 < Pr<0.7. In Tables 2
and 3, the conditions of calculations are yo/L = 0.02
and b/L = 0.05. Moreover, K is taken to be 50000
for the constant heat flux at the lower plate surface
and 1 for the constant temperature at the lower plate
surface. Nup shows the local Nusselt number based on
the constant heat flux at the interface and Nug shows
the local Nusselt number based on the constant inter-
facial temperature.

Table 2. Degree of difference between the local Nusselt
numbers calculated with and without the effect of wall
conduction in the range of 0.25 < x* € 0.75
(constant heat flux at lower surface of plate,

K = 50000, yo/L = 0.02, b/L = 0.05)

Pr=1001 Pr=201 Pr=07
Re 100(1\’21}7“ Nu)fNup(%)
10000 14-21 15-17 4-7
50000 23-27 13-14 4-6
100000 25-27 i1-14 3-5

Table 3. Degree of difference between the local Nusselt
numbers calculated with and without the effect of wall
conduction in the range of 0.25 € x* € 0.75
(constant temperature at lower surface of plate,

K =1, yo/L = 0.02, b/L = 0.05)

Pr =001 Pr=201 Pr=107
Re 100(Nu — Nur)/Nur (%)
10000 12-23 16-18 4-7
50000 26-34 15-16 4-7
100000 30-35 13-16 3-6
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F1G. 6. Effect of plate thickness on interfacial temperature

profiles and local Nusselt numbers (constant temperature at

lower surface of plate, Pr = 0.7, Re = 10000, Nu,, = 259421,
yof/L = 0.02).

The local Nusselt numbers in Table 2 approach
asymptotically to the result for Nur, and those in
Table 3 approach asymptotically to the result for Nup
as described previously. From the Tables 2 and 3, it
is shown that the effect of wall conduction on the heat
transfer can not be neglected for low Prandt] number,
For Pr=1001, the degree of difference is about
12-35%,. The degree of difference for Pr= 0.1 and 0.7
decreases with increase of Reynolds number, however,
for Pr=001 increases with increase of Reynolds
number. This reason can estimate from Sleicher and
Tribus paper [ 15] that showed the increase of difference
between Nup and Nur with Reynolds number at very
low Prandtl number. Though the degree of difference
is not shown in Tables, for Pr =10, it is less than
2-3% and the effect of wall conduction on the heat
transfer is insignificant. In the range of low Prandtl
number, it is obvious that in the design and analysis
of heat exchange equipment, axial conduction in the
wall can have a significant effect on the heat transfer
and temperature field in the fluid adjacent to the wall.
In the laminar flow, the effects on the conjugated heat
transfer have similar tendencies, as in the turbulent
flow. The degree of difference is about 20%, and shows
a few variations for Péclét number [14], but the effect
of Prandtl number on laminar conjugated heat transfer
is smaller than that on turbulent conjugated heat
transfer.

This model can be applied to a more precise design
of heat exchange equipment, and the interfacial tem-
perature distribution that is predicted from this model
will enable the adequate sclection of insulation
materials of a duct.
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3. EXPERIMENTAL EXAMINATION

3.1. Experimental apparatus and procedure

Measurement of the local heat transfer coefficient
was performed for a turbulent flow fully developed in
the rectangular duct consisting of a 200cm length,
15¢m wide and 3 cm high. A 30 cm heat-transfer plate,
consisting of hard polyvinyl chloride extending the
width of the duct, was installed about 150cm from
air inlet. A heating chamber, attached to the bottom
of plate, was used as the heat source to the system.
The upstream and downstream edges of the plate were
insulated. The entire test section was also insulated by
surrounding the styroform plates to minimize heat
losses. A scheme of experimental apparatus is shown

in Fig. 7.
j £8)
3)
@)
]
(1) Blower (7 Constart temperature hot wire
(2 Controt valve anemometer
@) Orifice fi & Th
@)  Honeycomb ) Heating chamber
(5) Entrance duct (0 Pump

(6) Test specimen (1) Constont temperature bath

FiG. 7. Schematic diagram of experimental apparatus.

To obtain the interfacial temperature and the local
heat flux, the thermocouples were installed in the plate
at five positions along the flow and at five positions
perpendicular to the direction of flow. From the
measured temperature distribution in the plate, the
interfacial temperature and the local heat flux at the
interface were estimated and the local Nusselt number
was calculated.

3.2. Experimental results and considerations

The experiments were made keeping a constant tem-
perature at the lower surface of the plate. From the
data of velocity, it was confirmed that the horizontal
velocity distribution of the fluid in the duct was almost
uniform within 10cm wide. The vertical velocity dis-
tribution of the fluid at the center line of the duct
shown in Fig, 8 fairly agrees with the results calculated
by the method of Mizushina et al. [8]. Experimental

003——T1— —T T
Re=24665

002

001+

Y (m)
O o

u (mis)

F1G. 8. Vertical velocity distribution of fluid at center line
of duct.

data of Larson et al. [11] on the heat transfer between
parallel plates are in good agreement with their
numerical solution, although they observed the second-
ary flow that occurs in the corners of the duct.
Therefore, it seems that the flow in the experimental
duct may be considered to be two dimensional. Figure
9 shows the experimental data for unsymmetrical heat
transfer in a 15 by 3cm duct and numerical solution
for the two dimensional channel flow. The predicted

experiments| theory| b/L| Re
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0.1033 21.665
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F16. 9. Comparison of predicted numerical solutions with
experimental data (constant temperature at lower surface of
plate, Pr = 0.7, yo/L = 0.05).

temperature distributions at the interface are in reason-
ably good agreement with the measured interfacial
temperatures. Somewhat poorer agreement is obtained
in comparison with the predicted and measured local
Nusselt numbers, however, for the Nusselt numbers
calculated from the experimental data are more subject
to errors in the measurements than are the dimension-
less temperature profiles. Consequently, it is considered
that these experimental results are sufficiently accurate
for technical purposes and that this theoretical model
represents fairly well the heat-transfer phenomena.

CONCLUSIONS

By the theoretical analysis on the effect of axial
conduction in the wall on the heat transfer with tur-
bulent flow between parallel plates, it was found that
the Prandtl number and the Reynolds number of the
fluid, the ratio of conductivity of the wall to that of the
fluid, K = ky/k;, and the thickness to length ratio of
the wall, b/L, were the important parameters in deter-
mining the effects of the axial conduction. These effects
are especially true in the low Prandtl number,

1. In the range of low Prandtl number, it is shown
that the effect of wall conduction can have a
significant effect on the heat transfer (the local
Nusselt number and the interfacial temperature
distribution).
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2. For the constant heat flux at lower surface of
the plate, the effect of wall conduction on the heat
transfer increases with increase of conductivity
ratio K.

3. For the constant temperature at lower surface of
the plate, the effect of wall conduction on the
heat transfer increases with decrease of con-
ductivity ratio K.

It was confirmed, as expected, that the effect of wall
conduction could be neglected reasonably when the
plate was very thin. In the laminar flow, the effects on
the conjugated heat transfer have similar tendencies,
as in the turbulent flow. However, the effect of Prandtl
number on laminar conjugated heat transfer is smaller
than that on turbulent conjugated heat transfer.

Experiments were conducted with paralle] flow for

the constant temperature at the lower surface of the
plate. The experimental resuits were in good agreement
with the theoretical solutions. Therefore, it was found
that the present model could be applied to the design
of a heat exchanger and the selection of insulation
materials of a duct.
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APPENDIX 1
Eddy viscosity and velocity distribution
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INFLUENCE DE LA CONDUCTION A LINTERIEUR DE LA PAROI SUR LE TRANSFERT
DE CHALEUR EN ECOULEMENT TURBULENT ENTRE PLAQUES PARALLELES

Resumé—Aprés avoir examiné expérimentalement l'influence de la conduction thermique & P'intérieur
de la paroi sur le transfert de chaleur en écoulement turbulent établi, on a développé une étude analytique
du transfert de chaleur avec conduction axiale dans la paroi limitant le fluide en écoulement turbulent,
afin de déterminer l'influence de la conduction dans la paroi sur le transfert de chaleur en écoulement

turbulent entre plaques planes paralléles,

A partir des résultats numériques pour des nombres de Reynolds compris dans le domaine
10* < Re < 10° et des nombres de Prandt! dans le domaine 0,01 < Pr < 10, il est confirmé que le rapport
de la conductivité thermique de la paroi a celie du fluide, ainsi que I'épaisseur de la paroi, pouvaient
avoir une influence significative sur le transfert de chaleur et le champ de température dans le fluide
adjacent a la paroi. Des expériences sur plaque plane ont été réalisées et les résultats obtenus sont en

bon accord avec les résultats analytiques.
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DER EINFLUSS DER WANDWARMELEITUNG AUF DEN WARMEUBERGANG
BEI TURBULENTER STROMUNG ZWISCHEN PARALLELEN PLATTEN

Zusammenfassung—Es wird der Einflull der Wandwirmeleitung auf den stationdren Wirmeiibergang
bei turbulenter Strémung untersucht. Fiir den Wirmeiibergang bei axialer Wirmeleitung in den
Begrenzungswinden eines turbulent strémenden Fluides wird ein Modell vorgestellt, das die Mdglichkeit
bietet, den EinfluB der Wirmeleitung in den Winden auf den Warmeiibergang bei turbulenter Strémung
zwischen parallelen Platten zu bestimmen.

Die Ergebnisse der numerischen Rechnung fiir die Bereiche 10* < Re < 10° und 0,01 < Pr< 10
bestatigen, daB das Verhdltnis der Wirmeleitfahigkeiten von Wand und Fluid sowie die Wanddicke
einen betrdchtlichen EinfluB auf den Wirmeiibergang und die Temperatur der wandnahen Fluidschicht
ausiiben, Experimentelle Untersuchungen an ebenen Platten ergaben eine gute Ubereinstimmung mit

den analytischen Ergebnissen.

BAWSAHUWE TEFJIONTPOBOAHOCTH CTEHKH HA
TEMJIOOBMEH TTPHU TYPBYJIEHTHOM TEYEHWUU
KUAKOCTH MEXAY MNAPAJUIEJIbHBIMHU
NMNIACTUHAMU

Ansotanus — Mccnenyercs BAWAHUE TENJONPOBOAHOCTH CTEHKHM HA CTALMOHADHLINA TENnooBMeH ¢
TypOYACHTHBIM NOTOKOM XHIAKOCTH, LN OLEHKH BIIMSHHUS TEIIONPOBOAHOCTH CTEHKH HA TEnso-
06MeH ¢ TypOy/IEHTHBIM NOTOKOM KHAKOCTH NPOBOAUTCS TEOPETHHECKHH aHANM3 NPOLECCa TErio-
oOMEHA Ha MO TCHEHHN MEXIY NapaiienbHbIMM NIACTHHAMM NPH YYETE TETIONPOBOAHOCTH
CTEHKH, OTpaHHYMBaloOWed NOTOK XHUAKOCTH. Pe3ynpTaTe! YHCNeHHbIx pacyeTos npu 10% < Re £ 10°
7 0,01 £ Pr = 10 noavsepinny CyHIECTBEHHOES BHSHHE BE/IHYMHbLI OTHOLLCHUA TENIONPOBOAHOCTH
CTEHKH K TENMONPOBOAHOCTH KHAKOCTH ¥ TOMILMHDI CTCHKH HAa TENNooOMeH U TemaepaTypHoe nose
KUAKOCTH BOJTH3IM CTEHKH. IKCMEPHMEHTbI MPOBOAWIUCH HA MIOCKOH rnactuie. [MonyyeHo xopomree
COOTBETCTBHE MEXAY 3KCNEPHMEHTANIBHLIMH H PACHETHBIMHY JaHHBIMH.



