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EFFECT OF CONDUCTION IN WALL ON HEAT TRANSFER 
WITH TURBULENT FLOW BETWEEN PARALLEL PLATES 

MIKIO SAKAKIBARA and KAZUO ENDOH 
Department of Chemical Process Engineering, Hokkaido University, Sapporo, Japan 

(Receiued 24 June 1976) 

Abstract-Wall conduction effects on steady-state turbulent Bow heat-transfer experiments are examined, 
and an analysis of heat transfer with axial conduction in the wall bounding a fluid with turbulent 
flow is developed to determine the effects of conduction in the wall on heat transfer with turbulent flow 
between parallel plates. 

From the results of numerical calculation for Reynolds numbers in the range lo4 S$ Re d 10’ and 
for Prandtl numbers in the range 0.01 G Pr G 10, it was confirmed that the ratio of thermal conductivity 
of wall to that of fluid and the thickness of wall could have significant effects on heat transfer and 
temperature field in the fluid adjacent to the wall. Experiments on the flat plate were conducted and 

the experimental results are in good agreement with the analytical results. 

NOMENCLATURR 

(i+ lfTi+l; 

plate thickness [ml; 

b/Ye; 
coefficient in equation (6); 
Graetz number = 4~0 Re Pr/L; 
C,%(O); 
k&j ; 
thermal conductivity p/m * K] ; 

iength of heat-transfer section of plate [ml; 
local Nusselt number; 
local Nusselt number based on constant heat 
flux at solid-tfuid interface; 
local Nusselt number based on constant 
temperature at solid-fluid interface; 
fully developed Nusselt number; 
16I;/Gz; 
Prandtl number; 
dimensionless temperature gradient; 
heat flux p/m’]; 

6 
PY 
7ir 

7lvf 

Subscripts 

e, 
.L 
0, 
s, 
W, 

R, R,,,, eigenfunction; 

RG Reynolds number; 

4 temperature [K]; 

% velocity of fluid [m/s]; 
+ 

u 7 u/&/Pk 
u*, u/v = u+/v+ ; 
V, mean velocity of fluid [m/s]; 

v+, vi &w/P); 

=r 
coordinate parallel to flat plate cm]; 

x/L; 
Y, coordinate normal to flat plate [m] ; 

+ 
Y 7 Y~(~~/P~/v; 

Y** Y/Y0 = y+/Jio+; 

YOY half width of duct [m]. 

Greek symbols 

a, thermal diffusivity [m’/s]; 

& coefficient defined in equation (22); 

Yt 1+ fi@h/V) ; 

S, coefficient defined in equation (23); 

&k> eddy diffusivity for heat [m’fs]; 

eddy di~sivity for momentum [m’/s]; 
dimensionless temperature defined by 
equation (5); 
dimensionless temperature defined by 
equation (13); 
kinematic viscosity of fluid [m’/s]; 
eigenvalue; 
dummy variable; 
density of fluid [kg/m”] ; 
coefficient in equation (15); 
shear stress at interface [N/mZ]. 

entrance; 
fluid; 
solid-fluid interface; 
solid; 
lower surface of plate. 

INTRODUCTiON 

IN MOST previous analyses on the heat transfer with 
forced convective flow, it is common practice to pre- 
scribe the temperature, the heat flux, or a combination 
of the two at the solid-fluid interface. In most real 
cases, however, these boundary conditions cannot be 
known a priori, but depend on the coupled mechanism 
of heat transfer in the fluid and conduction in the 
solid. 

It is then necessary to solve the energy equations 
for the fluid and the solid body simultaneously under 
the conditions of ~ntinuity in the heat flux and tem- 
perature at the interface. For example, in the design 
and analysis of a heat exchanger, axial conduction of 
heat in the wall bounding a fluid is usually ignored, 
but it can have significant effects on the heat transfer 
and temperature field in the fluid adjacent to the wall. 
This is especially true in the thermal entrance region. 

Recently, Perelman [l] called this type of problem 
a “conjugated” boundary value problem, and presented 
the model of slip flow around a body with distributed 
heat sources, but no numerical results were given. 
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Sell and Hudson [Z] treated the problem of heat 
transfer to a slug flow past a flat plate and Davis er al. 
[3] studied the effect of conduction in the wall on the 
heat transfer to Poiseulle-Couette flow between 
parallel plates. Olsson [4] considered the problem of 
heat transfer to a finite wedge-shaped fin in laminar 
flow. Luikov et al. [IS, 61 carried out a series of analyses 
on these problems in laminar flow. The previous pub- 
lished papers deal with the problem of heat transfer 
only in laminar flow, and we have few analytical 
treatments for turbulent flow. 

From a practical point of view, however, it is often 
desirable to use short passages with turbulent flow in a 
heat exchanger in order to take advantage of the high 
heat-transfer coefficients in the entrance region. 

The purpose of the present study is to analyse a 
conjugated heat-transfer problem with turbulent flow 
between parallel plates. The problem deals with heat 
transfer between a flat plate of finite thickness and 
the fluid in contact with it. The boundary conditions 
of the lower surface of the plate that contacts a heat 
source are taken to be the uniform heat flux or the 
constant temperature. The main objective is to deter- 
mine how the interfacial temperature and the local 
Nusselt number variations (that are influenced by axial 
conduction in the wall) can be predicted from solutions 
for the simultaneous energy equations for both fluid 
phase and solid wall, and to interpret the results of 
our experimental works. 

I. MATHEMATICAL ANALYSIS 

1.1. Derivation offundamental eqkations 
Consider turbulent flow between parallel plates, 

shown schematically in Fig. 1. In the present work, 

FIG. 1. Schematic model of heat transfer section of duct. 

axial conduction in the fluid and viscous heat dissi- 
pation can be ignored and the physical properties of 
the fluid are assumed to be constant. The temperature 
field in the fluid is described by 

(1) 

Boundary conditions 

x<O:tf= tfe 
x>o: y=o, tl. = t/.(x) 

: y = 2y0, atfpy = 0. (2) 

The temperature field in the wall bounding the fluid 
is given by 

a2t, a2t, 
g+“=o 

ay (3) 

Boundary conditions 

X = 0, L: c%,px = 0 
y=o : t, = tso(x) 
y = -b : dt,/iiy = -q,,,/k, (for the constant heat flux 

at the lower surface of the plate) 
or : t, = t, (for the constant temperature at the 

lower surface of the plate). (4) 

1.2. Analysis ofenergy equation for thejuid 
The temperature can be written in terms of the solu- 

tion for a constant interfacial temperature by applying 
the extended Duhamel’s theorem. 

First, we solve the problem with a constant tem- 
perature condition (uniform temperature on one wall, 
the other wall insulated). The dimensionless variables 
are defined as 

u u+ .X u*=__=-- 
c v+’ 

x* = - 
L’ 

We obtain by the method of separation of variables 

where A,,,, R, are the eigenvalues and eigenfunctions 
of the Sturm-Liouville problem 

where 

y=l+Prh 
V 

Boundary conditions 

y*=O:R=O 

y* = 2 : dR/dy* = 0. (8) 

The coefficients C, are given by 

s 

2 
n*R,(y*)dy* 

c,= “z 

s 

(9) 
u*Rf(y*)dy* 

0 

The mixed-mean temperature and the local Nusselt 
number are given by 

efm = 4 F 9 exp( - 1624,*/G~) (10) 
m=O m 

8 t C, Rb(0) exp( - 161: x*/Gz) 
Nu= m=” 

a, C,Ra(O) 
(11) 

c ___ exp( - 16I$,~*/Gz) 
m=O % 

Hatton et al. [7] have tabulated the eigenvalues and 
the constants for this problem for the various values 
of Prandtl number and Reynolds number. However, 
there are ambiguous statements in the eddy diffusivity 
distribution and the fluid velocity distribution. They 
assumed that the ratio of the eddy diffusivities for 
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momentum and heat was unity. TO obtain the more 
accurate solution, we used the eddy diffusivity and the 
fluid velocity distribution presented by Mizushina et al. 
[8,9] from a reconsideration of the available experi- 
mental works (cf. Appendix 1). We used the turbulent 
Prandtl number as follows, (0 < y* < 1) 

Pr = 0.01 

= 0.1 : 

[1+90~~3~z(&,./v~~/4] [35 + (EJV)] 

ss/sk = [o.o2sPr(&,,~s) + ~P~3’2(&,~/V)l’4] [45 + (EJV)] 

(Netter et at.) [lo] 

Pr = 0.7 : E,/E,, = 0.86 (Larson et al.) [ 11 J 

Pr = 10 E,/E,, = l/(O.l265y* + 1.064) 

(Gowen et al.) [12]. (12) 

New dimensionless variables are defined by 

0 =2 t/t,= (for the constant heat flux at the lower 
surface of the plate) 

0 = (t - t,)/(tfe - t,J (for the constant temperature at 
the lower surface of the plate). 

(13) 

The solution for the problem with a variable interfacial 
temperature can be written by applying Duhamel’s 
theorem to equations (6) and (13) to give 

x exp[-P,(x*-5)] 
I 

d5 (14) 

where, it is assumed that the interfacial temperature 
is given by 

O,,(t)= 1+To+T14+tzr2f,,.+zi5i+... . (15) 

The dimensionless temperature gradient at the inter- 
face is given by 

= 70 f Hme-PdL+aO x 
in=0 

m F(l-e-p,7+.. 
m=O m 

+ai f 2 
i 

[ c 
pi__ x*Li-l)_ 

(i- 1) 
- 

II 
. . . 

m=o m p* Pt?l 

where -;t-(l-e-P”?...~~~+... (16) 
rm JJJ 

Q.r = q/yolk,tf= (for the constant heat flux 
at the lower surface of the 
plate) 

Qr = 45 yolk&, - LJ (for the constant 
temperature at the lower 
surface of the plate) 

Pm = 16l:JGz, H, = &R:(O), ai = (i + l)ti+ 1. 

1.3. Analysis ofenergy equation for the solid 
Equations (3) and (4) (the equation of heat conduc- 

tion in the wall) are transformed into dimensionless 
form as those for the fluid. The solutions are given by 

equations (17) and (18) for the constant heat flux, and 
by equations (19) and (20) for the constant temperature 
at the lower surface. 

0, = -Qwy* + Osi,(x*) dx* 

+ 2 .f cash tnwocY* + b*ULJ cos nxx* 

n=l cosh[nnyo b*,‘L] 

s 1 

X O,,(x*f cos nnr* dx* (17) 
0 

-2gI e)tanh(yb*)cosnrtx* 

s 1 

X Oso(x*) cos mm* dx* (18) 
0 

where 

Qs = wo,‘ktfe, Qw = qwyofkstfe 

@o(x*)dx* 

m sinh[nny,(y* + b*)/L] 
-f-2 c sinh[nlcy, b*/L] ‘OS “‘* ,,= 1 

X Oso(x*) cos nnx* dx* (19) 

Qs = - ~~)y*=o = -; loi O,,(x*)dx* 

-2 iI (y)coth (y b*)cos nltx* 

X 

where 

s 1 

C&(x*) cos nnx* dx’ (20) 
0 

o,,(x*) = If i t$*f. 

i=O 

1.4. Heat exchange between the juid and the solid wall 
The following relations are applicable at the interface 

01, = %, Qs = KQs (21) 

where K = k,/k,. 
In order to dete~ine the coefftcients to, ~1, ~2, . . . to 

obtain the interfacial temperature distribution, the 
orthogonality of cosine function is applied to equation 
(21) (Sakakibara et al.) [13,14]. A system of linear 
simultaneous equations which can be solved to evaluate 
the coefficients is obtained by 

dx* = Q (y-4 
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-H,,,roe-P4* cosnnx*dx* 1 
where 

F&z*) = {l -e-P‘@~/_Pm 

Fi(X*) = {X *i-i~i_,(x*,)/p,. 

For the constant heat flux at the lower surface of the 
flat plate 

/j’ = -Qw, 

and for the constant temperature at the lower surface 
of the flat plate 

the mixed mean temperature and the local Nusselt 
number are given 

o,, = I+-& 
s 

‘*&dx* 
0 

(24) 

The focal NusseIt number is expressed by 

. (26) 

2. ANALYTICAL SOLUTIONS AND CONS~ERA~ONS 

2.1. Solution ofeigen~a~ue problem 
The values of &, and C,,,&,(O) for three Reynolds 

numbers and four Prandtl numbers are given to twenty 
terms in Table 1. In Fig. 2, our solution for unsym- 
metrical heat transfer is compared with Hatton et al.% 
solution [7] to the analogous energy equation for tur- 

- 
tThe notation of 6 in Kagaku Kogaku [13] should be 

read 6 = cothnnh. It is corrected in Heat Transfer, Japan. 
Res. [i3]. 

---- Hattcn et al ” 
__ thii wti 

2 
0.1 1 IO 

x14y. t-1 
Iol 

FIG. 2. Comparison of present numerical values with those 
of Hatton et al. (uniform temperature on one side, the other 

side insulated). 

bulent flow between parallel plates. For Pr = 0.1, our 
solutions are in fairly good agreement with Hatton 
et al’s solutions. On the other hand, our solutions 
show lower Nusselt numbers than that obtained by 
Hatton et al.‘s solutions for Pr = 10. This may be 
attributed to the difference of the values of the eddy 
diffusivity, the fluid velocity distribution and the tur- 
bulent Prandtl number used in solving the energy 
equation. Hatton et al.‘s solution is also limited to 
values ofx/4yo greater than 1. However, our solution 
described here is effective to values of x/4y0 greater 
than 0.1. 

2.2. Solution of the conjugated problem 
In the previous papers, the effects of axial conduction 

in the wall on the interfacial temperature were esti- 
mated by Sell et al. [2] and Davis et ai. [3] for the 
constant heat flux at the lower plate surface. However, 
the general conclusion was not found for the local 
Nusselt number distribution. In this work,‘we made 
the numerical analysis for the effect of wall conduction 
on the local Nusselt number and the interfacial tem- 
perature distribution. The effect of wall conduction on 
the heat transfer was also discussed for a flat plate 
with the constant heat flux and the constant tempera- 
ture at the lower plate surface contacting the heat 
source. 

In the calculation, the orthogonal&y of cosine func- 
tion is apphed to equation (21). The linear simui- 
taneous equations, equations (22) and (23), have a 
unique sotution and were solved by Gauss-Jordan 
method. Equation (1.5) was found to be a rapidly con- 
vergent series, so the results presented here were cal- 
culated by third order polynomials. The eigenvalues 
and constants in equations (22) and (23) were estimated 
by the first twenty terms. 

The equations describing the turbulent conjugated 
heat transfer aresolved numerically for lo4 < Re < 105, 
0.01 < Pr < 10, ye/L = 0.02, 0.001 < b/L < 0.05 and 
1 < I(: 6 50000. Figures 3-6 show the representative 



Effect of induction in wall 511 

Table 1. Eigenvalues and constants. Uniform temperature on one side, the other side insulated 

Re = 10000 
Pr = 0.01 Pr = 0.1 Pr = 0.7 Pr=lO 

m An CR8 G(O) AlI G JWO) All Gl KSO~ An cn Kn(0) 

0 0.7907424 

: 
2.387ooO 
3.980757 

3 5.576050 
4 7.173212 
5 8.772061 
6 10.37223 
7 11.97332 
8 13.57503 
9 15.17713 

10 16.77947 
11 18.38203 
12 19.98471 
13 21.58744 
14 23.19011 
15 24.79267 
16 26.39505 
17 27.99724 
18 29.59928 
19 31.20112 

Re = 50000 

1.062687 1.068251 2.023355 1.800767 6.214894 3.200927 20.42286 
0.9141356 3.274810 1.495191 6.222992 2.343795 19.76490 1.577115 
0.8649360 5.509067 1.182879 11 GOP93 1.213341 36.94320 0.7824505 
0.8223678 7.766698 0.9583012 15.83777 0.8386898 53.26427 0.7370211 
0.7807557 10.02954 0.8155993 20.50739 0.7250058 66.34003 0.8934897 
0.7404411 12.28273 0.7333593 24.91433 0.7319784 77.20027 1.67005 1 
0.7031015 14.52004 0.6948843 29.12993 0.8561895 88.83077 2.942503 
0.6691142 16.74341 0.6837522 33.32843 1.058112 101.3196 2.601044 
0.6388302 18.95881 0.6879798 37.57233 1.241457 114.9463 1.847579 
0.6118909 21.17203 0.6957883 41.86729 1.273128 128.4029 1.623957 
0.5877954 23.38667 0.6985316 46.22904 1.173910 141.1888 1.835968 
0.5662184 25.60425 0.6944153 SO.64224 1.050001 153.8608 2.210371 
0.5468987 27.82464 0.6834765 55.07417 0.9498438 166.7016 2.325579 
0.529S461 30.04692 0.6702539 59.50155 0.8877637 179_9056 2.054597 
0.5140634 32.27043 0.6545382 63.91024 0.8581674 193.3113 1.800787 
0.5002540 34.4954s 0.63705~ 68.29502 0.8559606 206.6267 1.698895 
0.4879510 36.72321 0.6157694 72.65587 0.8827127 219.7017 1.767534 
0.4769195 38.95478 0.5909196 77.00084 0.9225720 232.6632 1.928840 
0.4668772 41.19025 0.5649742 81.34468 0.9539520 245.6602 1.990960 
0.4576459 43.42787 0.5408628 85.70704 0.9427588 258.8776 1.848189 

-.- 

0 0.8184341 1.127200 1.635171 4.801148 3.320573 21.21170 6.408935 81.69296 
1 2.466011 0.9868990 5.056098 3.307465 11.65080 7.426775 38.77928 6.063249 
2 4.110855 0.9463364 8.554299 2.432236 20.73845 3.616122 72.88529 2.336639 
3 5.756289 0.9147396 12.098 12 1.890018 29.95922 2.361603 107.0561 1.530405 
4 7.402283 0.8871595 15.63778 1.592916 39.02563 1.888524 139.8280 1.311778 
5 9.048500 0.8637160 19.14322 1.452925 47.83287 1.720458 171.3628 1.328721 
6 10.69463 0.8455436 22.61096 1.403317 56.42005 1640403 201.6754 1.339187 
7 12.34051 0.8319845 26.05602 1.398832 64.92529 1.591137 231.6762 1.475725 
8 13.98614 0.8219738 29.49789 1.384163 74.48263 1.471176 261.4938 1.476164 
9 15.63165 0.8139109 32.95155 1.344156 82.13569 1.379199 290.7883 1.746614 

10 17.27717 0.8057989 36.42348 1.265567 90.82749 1.270186 318.4558 1.919018 
11 18.92296 0.79683 15 39.90958 1.190464 99.45799 1.266908 344.8066 2.656835 
12 20.56907 0.7864942 43.39833 1.120982 107.9627 1.266408 371.3062 3.6628 10 
13 22.21551 0.7753367 46.87870 1.087722 116.3581 1.365504 398.425 1 4.771676 
14 23.86217 0.7639133 SO.34671 1.066148 124.7126 1.426507 425.9647 5.364144 
15 25.50891 0.7533244 53.80613 1.066216 133.0815 1.523635 453.9592 5.187028 
16 27.15558 0.743702 1 57.26454 1.053514 141.4751 f.560169 482.3039 4.937506 
17 28.80213 0.7354858 60.72865 1.038746 149.8723 1.642241 511.0129 4.296126 
18 30.44857 0.7278780 64.2~89 1.004302 158.2538 1.730880 540.0888 3.907357 
19 32.09501 0.7207162 67.67827 0.9771636 166.6222 1.890389 569.4771 3.334017 

Re = 100000 

0 0.8527500 
1 2.569709 
2 4.284535 
3 6.000345 
4 7.716726 
5 9.432970 
6 11.14861 
7 12.86355 
8 14.57798 
9 16.29221 

10 18.00650 
11 19.72118 
12 21.43633 
13 23.15190 
14 24.86765 
1s 26.58334 
16 28.29877 
17 30.01390 
18 31.72881 
19 33.44369 

1.224706 2.057088 7.669958 
1.071055 6.416271 4.949062 
1.018010 10.91605 3.423840 
0.9737277 15.48217 2.577208 
0.9363319 20.02775 2.158581 
0.9074128 24.50747 1.988794 
0.8885302 28.92332 1.953850 
0.8780737 33.30667 1.978013 
0.8735705 37.69144 1.966780 
0.8716454 42.10002 1.903169 
0.8686807 46.53793 1.779837 
0.8630604 50.99263 1.675925 
0.8541790 55.44331 1.590364 
0.8435228 59.87590 1.566095 
0.8325389 64.29075 1.55159s 
0.82J4567 68.69899 1.557649 
0.8165827 73.11397 1.524803 
0.8123880 77.54388 1.483944 
0.8093270 81.98724 1.414376 
0.8065385 86.43420 1.371684 

4.378259 36.89763 8.669194 149.0541 
15.56713 12.23460 52.45694 10.96869 
27.82778 5.824700 98.66410 4.135897 
40.24260 3.801105 144.9288 2.623060 
52.41224 3.060748 189.2804 2.144607 
64.19979 2.806684 232.0528 2.031511 
75.68026 2.668047 273.4533 1.861865 
87.07153 2.548486 314.9421 I.836754 
98.57651 2.289103 356.9607 1.589301 

110.2565 2.086113 399.6086 1.689550 
122.0276 1.861885 441.9238 1.567629 
133.7528 1.813739 483.3S55 1.943482 
145.3451 1.737024 523.4539 1.930795 
156.8185 1.794289 562.6655 2.479385 
168.2594 1.732525 601.2783 2.513732 
179.7472 1.750248 639.4575 3.152696 
191.2937 1.646895 677.1364 3.506139 
202.8414 1.675537 714.8141 4.576444 
214.3179 1.631505 752.8343 5.667472 
225698 1 1.752710 791.1887 6.676805 
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I I I I I I I , , , 

b/L=001 

r 

FIG. 3. Effect of ratios of conductivity of plate to that of 
fluid on interfacial temperature profiles and local Nusselt 
numbers (constant heat flux at lower surface of plate, 

Pr = 0.7, Re = 10000, NIL, = 25.9421, y,/L = 0.02). 

examples evaluated for Re = 10000, Pr = 0.7, ye/L = 

0.02,O.OOl < b/L < 0.05 and 1 i K < 50000. Figure 3 
shows the effect on the Nu/Nu, and the interfacial tem- 
perature distribution for various conductivity ratios, K, 

for the constant heat flux at the lower plate surface and 
for b/L = 0.01. The effect of axial conduction in the 
plate on the heat transfer increases with increase of 
conductivity ratio K. With an increase of K, the 

t 
b/L401 

‘; 

2 I I I I I I I 1 I 
+----martheat flux at intti 
I---cast.tempmt~at interlace 

FIG. 4. Effect of ratios of conductivity of plate to that of fluid FIG. 5. Effect of plate thickness on interfacial temperature 
on interfacial temperature profiles and local Nusselt num- profiles and local Nusselt numbers (constant heat flux at 
bers (constant temperature at lower surface of plate, Pr = 0.7, lowersurfaceofplate, Pr = 0.7,Re = 10000, Nu, = 25.9421, 

Re = 10000, Nu, = 25.9421, y,,/L = 0.02). ye/L = 0.02). 

Nu/Nu, and the interfacial temperature distribution 
approach asymptotically to the result for the constant 
temperature at the interface. At K = 50000, the 
Nu/Nu, distribution almost agrees with the result for 
the constant interfacial temperature and the interfacial 
temperature distribution is almost uniform. On the 
other hand, for small K, the effect of axial conduction 
in the plate becomes insignificant and may be neglected. 
For K < 1, it is obvious that the Nu/Nu, distribution 
agrees with the result for the constant heat flux at the 
interface. The effect on the interfacial temperature 
distribution for various conductivity ratios has a ten- 
dency to agree with that of Sell et ul. [2]. 

Figure 4 shows results for the constant temperature 
at the lower plate surface and for b/L = 0.01. It is 
indicated that as K increases, the interfacial tempera- 
ture profile approaches the limiting profile predicted 
for the constant interfacial temperature. For K > 100, 
the Nu/Nu, distribution almost agrees with the result 
for the constant interfacial temperature. When K 

decreases to a small value, the temperature difference 
(t,, - tSm) between the interfacial temperature and the 
mixed mean temperature is very small but the order 
of the temperature difference varies considerably with 
x*. However, the temperature difference (t,-rI,,) 
between the lower plate surface and the interfacial 
temperature becomes almost uniform. Consequently, 
the heat flux at the interface becomes uniform. For 
K < 1, it seems that the Nu/Nu, distribution, con- 
trary to the above tendencies for large K, approxi- 
mately agrees with the results for the constant heat flux 
at the interface. 

Now, the effect of the flat plate thickness on the heat 
transfer is discussed. Figure 5 shows the results for 
the constant heat flux at the lower plate surface for 
K = 10000. It seems to be a quite reasonable con- 
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elusion that for small b/L, the Nu/Nu, distribution is 
in good agreement with the result for the constant heat 
flux at the interface. On the other hand, the effect of 
axial conduction in the plate increases for large b/L 
and the interfacial temperature distribution becomes 
almost uniform. The effect of b/L on the heat transfer 
varying with K tends to increase with increase of K. 
The effect of plate thickness on the interfacial tem- 
perature has a tendency to agree with that of Sell 
et al. [2] and Davis et al. [3]. Figure 6 shows the 
results for the constant temperature at the lower plate 
surface for K = 1. When b/L is very small, it can be 
treated as O,, = 0, that is, tsO = t,(const.). And, the 
solution approaches asymptotically to that of heat 
transfer to turbuIent flow neglecting wall conduction. 
The effect of b/L on the heat transfer varying with K, 
contrary to the above tendencies for the constant heat 
flux at the lower plate surface, tends to increase with 
decrease of I(. 

The effects of axial conduction on the heat transfer 
obtained for various values of Reynolds numbers and 
Prandtl numbers have the similar tendencies as are 
illustrated in Figs. 3-6. The difference between the local 
Nusselt numbers calculated with and without the effect 
of wall conduction is markedly affected by Reynolds 
numbers and Prandtl numbers. Tables 2 and 3 are the 
results which show the degree of difference obtained 
for IO4 < Re 6 lo5 and 0.01 < Pr < 0.7. In Tables 2 
and 3, the conditions of calculations are ye/L - 0.02 
and b/L = 0.05. Moreover, K is taken to be 50000 
for the constant heat flux at the lower plate surface 
and 1 for the constant tem~rature at the lower plate 
surface. Nu, shows the local Nusselt number based on 
the constant heat flux at the interface and NuT shows 
the local Nusselt number based on the constant inter- 
facial temperature. 

Table 2. Degree of difference between the local Nusselt 
numbers caiculated with and without the effect of wall 

conduction in the range of 0.25 < x* G 0.75 
(constant heat flux at lower surface of plate, 

K = 50000, ye/L = 0.02, b/L = 0.05) 

Re 

10000 

50000 
100000 

Pr = 0.01 Pr = 0.1 Pr = 0.7 

1 m(Nu, - ~u)/~~F (%) 
-_ 

14-21 15-17 4-7 
23-27 13-14 4-6 
25-27 i 1-14 3-5 

Table 3. Degree ofdifference between the local Nusselt 
numbers calculated with and without the effect of wall 

conduction in the range of 0.25 $ x* c 0.75 
(constant temperature at lower surface of plate, 

K = 1, y,,/L = 0.02, b/L = 0.05) 

Re 

10000 
50000 

1OOMx) 

Pr = 0.01 Pr = 0.1 Pr = 0.7 

1OO(Nu - N~T)/N~= (%I 

12-23 16-18 4-7 
26-34 15-16 4-7 
30-35 13-16 3-6 

x*(-1 
FIG. 6. Effect of plate thickness on interfacial temperature 
proties and local Nusselt numbers (constant temperature at 
lowersu~a~ofplate, Pr = 0.7, Re = 10000, Nu, = 25.9421, 

y,/L = 0.02). 

The local Nusselt numbers in Table 2 approach 
asymptotically to the result for NUT, and those in 
Table 3 approach asymptotically to the result for NuF 
as described previously. From the Tables 2 and 3, it 
is shown that the effect of wall conduction on the heat 
transfer can not be neglected for low Prandtl number, 
For Pr = 0.01, the degree of difference is about 
12-3.5x. The degree of difference for Pr = 0.1 and 0.7 
decreases with increase of Reynolds number, however, 
for Pr = 0.01 increases with increase of Reynolds 
number. This reason can estimate from Sleicher and 
Tribuspaper El51 that showed the increase of difference 
between Iv& and NuT with Reynolds number at very 
low Prandtl number. Though the degree of difference 
is not shown in Tables, for Pr = 10, it is less than 
2-3x and the effect of wall conduction on the heat 
transfer is insignificant. In the range of low Prandtl 
number, it is obvious that in the design and analysis 
of heat exchange equipment, axial conduction in the 
wall can have a significant effect on the heat transfer 
and temperature field in the Auid adjacent to the wall. 
In the laminar flow, the effects on the conjugated heat 
transfer have similar tendencies, as in the turbulent 
flow. The degree of difference is about 2Oyd and shows 
a few variations for PklCt number [14], but the effect 
of Prandtl number on laminar conjugated heat transfer 
is smaller than that on turbulent conjugated heat 
transfer. 

This model can be applied to a more precise design 
of heat exchange equipment, and the interfacial tem- 
perature distribution that is predicted from this model 
will enable the adequate selection of insulation 
materials of a duct. 
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3. EXPERIMENTAL EXAMINATION 

3.1. Experimental apparatus and procedure 
Measurement of the local heat transfer coefficient 

was performed for a turbulent flow fully developed in 
the rectangular duct consisting of a 2OOcm length, 
15 cm wide and 3 cm high. A 30 cm heat-transfer plate, 
consisting of hard polyvinyl chloride extending the 
width of the duct, was installed about 150cm from 
air inlet. A heating chamber, attached to the bottom 
of plate, was used as the heat source to the system. 
The upstream and downstream edges of the plate were 
insulated. The entire test section was also insulated by 
surrounding the styroform plates to minimize heat 
losses. A scheme of experimental apparatus is shown 
in Fig. 7. 

-Q++, (5) 

(1) 
(9) 

I I 

FIG. 7. Schematic diagram of experimental apparatus. 

To obtain the interfacial temperature and the local 
heat flux, the thermocouples were installed in the plate 
at five positions along the how and at five positions 
perpendicular to the direction of flow. From the 
measured temperature distribution in the plate, the 
interfacial temperature and the local heat flux at the 
interface were estimated and the local Nusselt number 
was calculated. 

3.2. Experimental results and considerations 
The experiments were made keeping a constant tem- 

perature at the lower surface of the plate. From the 
data of velocity, it was confirmed that the horizontal 
velocity distribution of the fluid in the duct was almost 
uniform within 1Ocm wide. The vertical velocity dis- 
tribution of the fluid at the center line of the duct 
shown in Fig. 8 fairly agrees with the results calculated 
by the method of Mizushina et al. [S]. Experimental 

OL ’ ’ ’ 
0 2 

: hlA 

6 10 

FIG. 8. Vertical velocity distribution of fluid at center line 
of duct. 

data of Larson et al. [1 l] on the heat transfer between 
parallel plates are in good agreement with their 
numerical solution, although they observed the second- 
ary flow that occurs in the corners of the duct. 
Therefore, it seems that the flow in the experimental 
duct may be considered to be two dimensional. Figure 
9 shows the experimental data for unsymmetrical heat 
transfer in a 15 by 3cm duct and numerical solution 
for the two dimensional channel flow. The predicted 

experiments theory blL Re 

0 - 0.038 27813 
0 ---- 0.069 24665 

A -.- 0.1033 24665 -i- I I . . , , , , , , 

\ K=5.224 

FIG. 9. Comparison of predicted numerical solutions with 
experimental data (constant temperature at lower surface of 

plate, Pr = 0.7, yO/L = 0.05). 

temperaturedistributions at the interface are in reason- 
ably good agreement with the measured interfacial 
temperatures. Somewhat poorer agreement is obtained 
in comparison with the predicted and measured local 
Nusselt numbers, however, for the Nusselt numbers 
calculated from the experimental data are more subject 
to errors in the measurements than are the dimension- 
less temperature profiles. Consequently, it is considered 
that these experimental results are sufficiently accurate 
for technical purposes and that this theoretical model 
represents fairly well the heat-transfer phenomena. 

CONCLUSIONS 

By the theoretical analysis on the effect of axial 
conduction in the wall on the heat transfer with tur- 
bulent flow between parallel plates, it was found that 
the Prandtl number and the Reynolds number of the 
fluid, the ratio of conductivity of the wall to that of the 
fluid, K = k,/k,, and the thickness to length ratio of 
the wall, b/L, were the important parameters in deter- 
mining the effects of the axial conduction. These effects 
are especially true in the low Prandtl number. 

1. In the range of low Prandtl number, it is shown 
that the effect of wall conduction can have a 
significant effect on the heat transfer (the local 
Nusselt number and the interfacial temperature 
distribution). 
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For the constant heat flux at lower surface of 
the plate, the effect of wall conduction on the heat 
transfer increases with increase of conductivity 
ratio K. 

For the constant temperature at lower surface of 
the plate, the effect of wall conduction on the 
heat transfer increases with decrease of con- 
ductivity ratio K. 

It was confirmed, as expected, that the effect of wall 
conduction could be neglected reasonably when the 
plate was very thin. In the laminar flow, the effects on 
the conjugated heat transfer have similar tendencies, 
as in the turbulent flow. However, the effect of Prandd 
number on laminar conjugated heat transfer is smaller 
than that on turbulent conjugated heat transfer. 

Ex~riments were conducted with parallel flow for 

the constant temperature at the lower surface of the 

plate. The experimental results were in good agreement 
with the theoretical solutions. Therefore, it was found 

that the present model could be applied to the design 
of a heat exchanger and the selection of insulation 
materials of a duct. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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APPENDIX 1 

Eddy viscosity and velocity distribution 

0 Q y+ c y: 

Y: 6 y+ G Yt 

‘=0.4y+ I-yc -1 
4‘ ! 1 Yo” 

u+ = 2.5 In y+ + 5.5 (4) 

YZ $ y+ G Yo’ 

t = 0.07yo’ (5) 

where A, y:, y: are described by 

s 

y: 1-y+/ya+ 
d + = 2.51ny:+S.5 

e ~+A(Y+)~ ’ 
(f$ 

y: = j{yo’ - [0.3(yo’)2 - lOyo+]“2l. (9) 

INFLUENCE DE LA CONDUCTION A L’INTERIEUR DE LA PAROI SUR LE TRANSFERT 
DE CHALEUR EN ECOULEMENT TURBULENT ENTRE PLAQUES PARALLELES 

R&rmi-Apres avoir examine exptrimentalement l’influenee de la conduction thermique a I’interieur 
de la paroi sur le transfert de chaleur en bcoulement turbulent ttabli, on a developpb une Ctude analytique 
du transfert de chaleur avec conduction axiale dans la paroi limitant le fluide en Bcoulement turbulent, 
afin de determiner I’influence de la conduction dans la paroi sur le transfert de chaleur en ecouiement 
turbulent entre plaques planes paralleles. 

A partir des r&hats numeriques pour des nombres de Reynolds compris dans ie domaine 
lo4 < Re e 10’ et des nombres de Prandtl dans le domaine 0.01 < Pr c 10. il est confirmt aue le raonort 
de la conductivitt thermique de la paroi a celle du fluide, &si que i’epa&seur de la pa&, pouv%ient 
avoir une influence signihcative sur le transfert de chaleur et ie champ de temperature dans le fluide 
adjacent B la paroi. Des experiences sur plaque plane ont ett realisees et les resultats obtenus sont en 

bon accord avec les r&mats analytiques. 
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DER EINFLUSS DER WANDWARMELEITUNG AUF DEN WARMEUBERGANG 
BEI TURBULENTER STROMUNG ZWISCHEN PARALLELEN PLATTEN 

Zmammenfassung-Es wird der Einflug der W~dw~meleitung auf den station&en W~rme~~rgang 
bei turbulenter Stromung untersucht. Fiir den W~~e~berga~g bei axialer W~~eleitung in den 
~grenzun~w~~den eines turbulent striimenden Ffuides wird ein Model1 vorgesteilt, das die M~glichkeit 
bietet, den EinfluB der Wlrmeleitung in den Wlnden auf den Warmetibergang bei turbulenter Striimung 
zwischen parallelen Platten zu bestimmen. 

Die Ergebnisse der numerischen Rechnung fur die Bereiche 10“ < Re < 10’ und 401 6 Pr < 10 
best&en, daR das Verhlltnis der Wlrmeleitflihigkeiten von Wand und Fluid sowie die Wanddicke 
einen betrlchtlichen Einflug auf den Wtirmetibergang und die Temperatur der wandnahen Fluidschicht 
ausiiben. Experimentelle Untersuchungen an ebenen Platten ergaben eine gute Ubereinstimmung mit 

den analytischen Ergebnissen. 

B-QMRHME TEfl~~~POBO~HOCT~ CTEHKM HA 
TEnJlOOLMEH llPM TYPSYflEHTHOM TEYEHMM 

XKMAKOCTM MEXflY nAPAJlJlEflbHblMM 
nJlACTMHAMM 

AHIIOT~~HR- !&CJIeIiyeTCx BflMRHMe TeIlflO~pOBOilHOC7H CTeHKH Ha CTaUMOHapHblfi TerUIOo6MeH C 
Typ6j'JIeHTHblM IlOTOKOM W(HLLKOCTM. _!&Ul OUeHKI1 BJIllllHMfl TeflflO~pOBO~HOCTM CTeHKM Ha Ten,nO- 
06~e~ c TypGyneri-rubiM IIOT~KOM xwaf(0cT11 nposoawcfl Teope+wiecKliii aHan npouecca renno- 
06MeHa Ha MOLleJlU Te'ieHAR MeWly Rapa~neflbHbIM~ n,~aCT~HaM~ npi4 YYeTe TenflOnpOBOnHOCT~ 
cTeHi0i, 0rpaH~Y~aa~me~ ~OTOK AU~KOCTH. Pe3y,qbTaTbl Y~CneHHbl~ pacreToa nprc 1041 Res IO5 
59 0.01 s PUS 10 nO~TBep~~fl~ C,WeCTBeHHOe B!IHI)HHe Ben~Y~Hbi OTHOUieHMIt TenflO~pOB#~HOCT~ 
CTeHKIlKTellJlOllpOBOilHOCTH ~HOKOCT$i W TOJlUIMHbl CTeHKM Ha TeilIlOO6MeH I( TeMflepaTypH0e nOJte 
)KWlKOCTN B6JlW3MCTeHKM.3KCneplilMeHTbl llpOBO~HJltiCb Ha LUlOCKOir IUlaCTHHe. flOJij'~eitOXOpO~Iee 

COOTBeTCTBMeMemLly 3KCIlepMMeHTaJlbHblMN M piWleTHblMi4 JlaHHblMH. 


